If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24k^2-8k-120=0
a = 24; b = -8; c = -120;
Δ = b2-4ac
Δ = -82-4·24·(-120)
Δ = 11584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11584}=\sqrt{64*181}=\sqrt{64}*\sqrt{181}=8\sqrt{181}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{181}}{2*24}=\frac{8-8\sqrt{181}}{48} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{181}}{2*24}=\frac{8+8\sqrt{181}}{48} $
| 2/3(a+6)+3/4(2a+1)+13/12=0 | | 17n=3/4 | | 18j+4j-12j-7j=9 | | 1/2=a/2 | | z/8+2=1 | | 16j-10j=18 | | x3+8=0 | | k/2.8+70.9=11.6 | | 4−4j=-2j−2 | | 12h-9h=18 | | 0.4=2.8x/0.4x^2+1.3 | | 17+2x=5(8x+3)+2 | | -f=-4−f | | -2w-616=16 | | -8.5x+0.85=-5.95 | | -2+8r=6r+6 | | 5(w-3)=-30 | | q+9=24 | | 9−t=2t | | -8a-5=a | | p=-1+p | | 3(n+5=45 | | 69=-9t-3 | | -7r=8−3r | | -4=6+c/6 | | -5(4p-6)=-36+2p | | -8z+5=-4−7z | | 7/8x+3/8=5/ | | 22+n/9=11 | | 3p-12=24 | | x^2+2x^2=36 | | z/9+3=-49 |